A nanomechanical device based on light-driven proton pumps.

نویسندگان

  • Quan Ren
  • Ya-Pu Zhao
  • Li Han
  • Hui-Bin Zhao
چکیده

In this paper, a hybrid device based on a microcantilever interfaced with bacteriorhodopsin (bR) is constructed. The microcantilever, on which the highly oriented bR film is self-assembled, undergoes controllable and reversible bending when the light-driven proton pump protein, bR, on the microcantilever surface is activated by visible light. Several control experiments are carried out to preclude the influence of heat and photothermal effects. It is shown that the nanomechanical motion is induced by the resulting gradient of protons, which are transported from the KCl solution on the cytoplasmic side of the bR film towards the extracellular side of the bR film. Along with a simple physical interpretation, the microfabricated cantilever interfaced with the organized molecular film of bR can simulate the natural machinery in converting solar energy to mechanical energy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crystallographic structure of xanthorhodopsin, the light-driven proton pump with a dual chromophore.

Homologous to bacteriorhodopsin and even more to proteorhodopsin, xanthorhodopsin is a light-driven proton pump that, in addition to retinal, contains a noncovalently bound carotenoid with a function of a light-harvesting antenna. We determined the structure of this eubacterial membrane protein-carotenoid complex by X-ray diffraction, to 1.9-A resolution. Although it contains 7 transmembrane he...

متن کامل

Molecular properties of a DTD channelrhodopsin from Guillardia theta

Microbial rhodopsins are membrane proteins found widely in archaea, eubacteria and eukaryotes (fungal and algal species). They have various functions, such as light-driven ion pumps, light-gated ion channels, light sensors and light-activated enzymes. A light-driven proton pump bacteriorhodopsin (BR) contains a DTD motif at positions 85, 89, and 96, which is unique to archaeal proton pumps. Rec...

متن کامل

Conversion of a light-driven proton pump into a light-gated ion channel

Interest in microbial rhodopsins with ion pumping activity has been revitalized in the context of optogenetics, where light-driven ion pumps are used for cell hyperpolarization and voltage sensing. We identified an opsin-encoding gene (CsR) in the genome of the arctic alga Coccomyxa subellipsoidea C-169 that can produce large photocurrents in Xenopus oocytes. We used this property to analyze th...

متن کامل

A natural light-driven inward proton pump

Light-driven outward H+ pumps are widely distributed in nature, converting sunlight energy into proton motive force. Here we report the characterization of an oppositely directed H+ pump with a similar architecture to outward pumps. A deep-ocean marine bacterium, Parvularcula oceani, contains three rhodopsins, one of which functions as a light-driven inward H+ pump when expressed in Escherichia...

متن کامل

Salinibacter: an extremely halophilic bacterium with archaeal properties.

The existence of large number of a member of the Bacteroidetes in NaCl-saturated brines in saltern crystallizer ponds was first documented in 1999 based on fluorescence in situ hybridization studies. Isolation of the organism and its description as Salinibacter ruber followed soon. It is a rod-shaped, red-orange pigmented, extreme halophile that grows optimally at 20-30% salt. The genus is dist...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanotechnology

دوره 17 6  شماره 

صفحات  -

تاریخ انتشار 2006